新聞詳情

食用菌多糖的提?。盒屡d技術及最新進展

發(fā)表時間:2025-05-07 08:16

食用菌多糖作為天然活性成分,近年來在食品、醫(yī)藥等領域備受關注。其獨特的抗氧化、抗腫瘤及免疫調節(jié)等活性,推動了多糖提取技術的快速發(fā)展。從傳統(tǒng)熱水浸提到新興的超聲波、微波協(xié)同技術,科學家們不斷探索高效、環(huán)保的提取方法,力求在產量與生物活性之間找到平衡點[1]。一篇由東海大學張嘉修研究團隊發(fā)表在 Carbohydrate Polymers上題為“Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances”的綜述為大家介紹了食用菌多糖提取的新興技術和最新進展。



01. 熱水提取 hot water extraction,HWE


熱水提取(HWE),是最常用的食用菌多糖提取技術,具有成本低、設備要求簡單的明顯優(yōu)勢。但高溫長時間處理易導致多糖降解與蛋白質變性,且能耗較高。例如,灰樹花(Grifola frondosa)在121℃下提取120分鐘,多糖得率僅3.35%,且分子量因熱降解顯著下降至561kDa[2]。酸/堿提取(acid- or alkaline-extraction, AE)通過破壞細胞壁連接結構,可提高不溶性多糖的得率,但強化學條件可能改變多糖構象,如平菇(Pleurotus ostreatus)經NaOH處理后,其β-葡聚糖雖得率提升,但分子量降低至30 kDa[3]


02. 超聲波輔助提取 ultrasonic-assisted extraction, UAE


超聲波輔助提取(UAE)利用空化效應破碎細胞壁,顯著縮短提取時間。研究發(fā)現(xiàn),靈芝(Ganoderma lucidum)在600W超聲處理60分鐘后,β-葡聚糖含量較傳統(tǒng)方法提升77%,多糖純度達50.2% [4]。然而,UAE可能導致分子鏈斷裂,如亞側耳(Hohenbuehelia serotina)經480W處理后的多糖分子量降至1.14 kDa[5]。微波輔助提取(microwave-assisted extraction, MAE)通過極性分子高頻振動產熱,實現(xiàn)快速穿透。香菇(Lentinula edodes)在850W微波下處理30分鐘,得率達15.4%,且抗氧化活性優(yōu)于傳統(tǒng)方法[6]。值得注意的是,MAE與超聲協(xié)同(ultrasonic-microwave synergistic extraction, UMSE)可結合兩者優(yōu)勢,如東方栓菌(Trametes orientalis)經協(xié)同處理后多糖得率提升至7.52%,抗腫瘤活性顯著增強[7]。


03. 酶輔助提取 enzyme-assisted extraction, EAE


酶輔助提取(EAE)以纖維素酶、果膠酶定向降解細胞壁基質,條件溫和且特異性強。蒙古口蘑(Tricholoma mongolicum)經2%纖維素酶處理127分鐘,多糖純度達80.1%,對DPPH自由基清除率較超聲提取提高7%[8]。但酶成本較高,且活性易受溫度、pH影響,限制其工業(yè)化應用。亞臨界水提?。╯ubcritical water extraction, SWE)利用高溫高壓改變水介電常數(shù),可同時實現(xiàn)提取與分級。杏鮑菇(Pleurotus eryngii)在210℃下處理,葡聚糖含量達73%,但溫度超過130℃會導致多糖鏈斷裂[9]。脈沖電場(pulsed electric field, PEF)通過電穿孔增強膜透性,羊肚菌(Morchella esculenta)在19kV/cm場強下提取的多糖得率較傳統(tǒng)方法提升40%,且分子量分布更均勻[10]


04. 雙水相提取 aqueous two-phase extraction, ATPE



雙水相提取(ATPE)憑借溶劑-鹽體系的分相特性實現(xiàn)高效純化。白樺茸(Inonotus obliquus)經硫酸銨/叔丁醇體系處理,多糖純化因子達5.7倍[11]。集成技術如EAE-UAE聯(lián)用可突破單一方法局限,蜜環(huán)菌(Armillaria mellea)經復合酶預處理后超聲提取,多糖得率提升至40.56%,抗氧化活性顯著增強[12]。此外,納米均質、真空提取等創(chuàng)新技術為多糖提取開辟新途徑,如靈芝(G. lucidum)經納米碳化鎢輔助提取,β-葡聚糖純度達70.2%,粒徑分布更均一[13]


技術選擇需兼顧目標多糖特性與產業(yè)化需求。分子量大的多糖更適合作免疫調節(jié)劑,而低分子量片段則利于跨膜吸收[14]。未來研究應關注技術聯(lián)用機制、規(guī)?;P蜆嫿吧芷谠u估,推動食用菌多糖從實驗室邁向工業(yè)化生產。通過持續(xù)優(yōu)化提取工藝,這些源自食用菌的“生命之糖”將在人類健康領域譜寫更輝煌的樂章。


參考文獻:

[1] Leong, Y.-K., Yang, F.-C., Chang, J.-S. (2021). Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr Polym, 251, 117006.

[2] Su, C.-H., Lai, M.-N., & Ng, L.-T. (2017). Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food

Chemistry, 220, 400–405.

[3] Palacios, I., García-Lafuente, A., Guillamon, ′ E., & Villares, A. (2012). Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms.

Carbohydrate Research, 358, 72–77.

[4] Alzorqi, I., Sudheer, S., Lu, T.-J., & Manickam, S. (2017). Ultrasonically extracted β-dglucan from artificially cultivated mushroom, characteristic properties and antioxidant activity.

Ultrasonics Sonochemistry, 35, 531–540.

[5] Li, X., & Wang, L. (2016). Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides. International Journal of Biological

Macromolecules, 83, 270–276.

[6] Akram, K., Shahbaz, H. M., Kim, G. R., Farooq, U., & Kwon, J. H. (2017). Improved extraction and quality characterization of water-soluble polysaccharide from gamma-irradiated

Lentinus edodes. J Food Sci, 82(2), 296–303.

[7] Zheng, Y., Cui, J., Chen, A.-H., Zong, Z.-M., & Wei, X.-Y. (2019). Optimization of ultrasonic-microwave assisted extraction and hepatoprotective activities of polysaccharides

from Trametes orientalis. Molecules (Basel, Switzerland), 24(1), 147.

[8] Zhao, Y. M., Song, J. H., Wang, J., Yang, J. M., Wang, Z. B., & Liu, Y. H. (2016). Optimization of cellulase-assisted extraction process and antioxidant activities of polysaccharides

from Tricholoma mongolicum Imai. J Sci Food Agric, 96(13), 4484–4491.

[9] Rodríguez-Seoane, P., Díaz-Reinoso, B., Gonzalez-Mu ′ noz, ? M. J., Fernandez ′ de Ana Portela, C., & Domínguez, H. (2019). Innovative technologies for the extraction of

saccharidic and phenolic fractions from Pleurotus eryngii. LWT, 101, 774–782.

[10] Liu, C., Sun, Y., Mao, Q., Guo, X., Li, P., Liu, Y., et al. (2016). Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field.

International Journal of Molecular Sciences, 17(6), 986.

[11] Liu, Z., Yu, D., Li, L., Liu, X., Zhang, H., Sun, W., et al. (2019). Three-phase partitioning for the extraction and purification of polysaccharides from the immunomodulatory medicinal

mushroom Inonotus obliquus. Molecules (Basel, Switzerland), 24(3).

[12] Yu, G., Yue, C., Zang, X., Chen, C., Dong, L., & Liu, Y. (2019). Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom.

Czech Journal of Food Sciences, 37(1), 51–56.

[13] Park, H. G., Shim, Y. Y., Choi, S. O., & Park, W. M. (2009). New method development for nanoparticle extraction of water-soluble beta-(1–&3)-D-glucan from edible mushrooms,

Sparassis crispa and Phellinus linteus. J Agric Food Chem, 57(6), 2147–2154.

[14] Zhang, J., Wen, C., Gu, J., Ji, C., Duan, Y., & Zhang, H. (2019). Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides

from Lentinus edodes. International Journal of Biological Macromolecules, 123, 1002–1011.




人類持續(xù)健康 · 華綠不斷壯大

聯(lián)系電話:400-0300-073
聯(lián)系郵箱:hualv@chinagreenbio.com
聯(lián)系地址:江蘇省宿遷市泗陽縣綠都大道88號

股票簡稱:華綠生物
股票代碼:300970
江蘇華綠生物科技集團股份有限公司
JIANG SU CHINAGREEN BIOLOGICAL TECHNOLOGY GROUP CO., LTD.
社會公益
最新動態(tài)
吃菇小廚
我們團隊